一、均匀设计的提出
- a5 L) |2 q! H
实际中的试验设计要求:
4 B1 L' U! F5 \9 H6 x1) 在一个生产过程中,有关的因素通常是很多的;
' t, P* h' E* o6 R# m+ e2) 在一项试验中,如何从众多的有关因子挑选出试验方案中的因素;
, v: T# {3 M; l: h G1 G
3) 试验的范围应当尽可能大一点;
B, B* L& x; ~3 V, M4) 若试验范围允许大一些,则每一因素的水平个数最好适当多一些。
3 \- u M1 u# f+ z* |
每一种试验设计方法都有其局限性,正交试验也不例外。它只宜用于水平数不多的试验中,若在一项试验中有S个因素,每个因素有q个水平,用正交设计安排试验,即使是部分实施,最少也要q2个试验,当q较大时,q2将更大,使实验工作者望而生畏。
( D7 }/ W2 E& o! q$ T5 s
怎样减少试验的次数呢? 让我们从正交试验的特点入手,是否能够通过删除一些不太重要的性质,来达到减少试验次数的目的。
9 E8 i7 e S( x. H$ [2 B我们以正交表为例,来解释正交设计的特点:
6 c9 N# H2 a8 N0 r! ]1) 任意一列中不同数字的重复数相同;
1 H' t& ]% R! b3 D' p9 A8 n$ k& o2) 任意两列中同行数字构成若干数对,每个数对的重复数也相等。
+ L: o' c/ C$ r! h+ e) ~这可以归纳为正交表具有“整齐可比”的性质,这个性质是为了便于试验数据分析。正交设计还有“均匀分散”的性质,这使得试验点有代表性。为了保证“整齐可比”的特点,正交设计就至少要求q2次试验,若要减少试验数目,只有去掉整齐可比的要求,只保留均匀分散的性质。均匀设计也就应运而生了!
( O+ o1 R1 e4 Z( K2 ?二、均匀设计表及其使用表的构造
$ Q6 d0 v# }* C5 ^2 H(一)均匀设计表的构造
) m6 l' w: v& e" ] W" J' F7 M( _根据均匀设计的思想,方开泰(1980),王元和方开泰(1981)为使用者提供了一套均匀设计表。每一个均匀设计表都由一张设计表和配套的一张使用表构成。均匀设计表有一个代号Un(qs),其中“U”表示均匀设计,“n”表示试验次数,“q”表示每个因子的水平数,“s”代表该表的列数. 例如表1 U7(73) ,表示均匀设计,做7次试验,共有3个因子,每个因子有7个水平。
+ s" X; v3 ]; E9 K0 n* \
表1 U7(73)
R( r$ l1 a7 T
均匀设计表的构造方法有很多种,这里仅介绍用好格子点法构造的均匀设计表。
1 F8 [0 `2 W. p7 c1. 给定试验数n,寻找比n小的整数h,且使n和h的最大公约数为1。符合这些条件的整数组成一个向量h=(h1,…,hm).
7 Q, O( f* O, M4 G7 {7 T+ Y" M, i
2. 均匀设计表的第i列由下法生成uij= jhi([modn]
: j; g8 K, ~: C; b% Z6 \
这里[modn]表示同余运算,若jhi 超过n,则用它减去一个适当倍数,使差落在[l,n]之中,uij 可以递推来生成
+ _4 N0 d5 d0 O z/ T4 J4 f& j" M8 J
- c% x# f# t: M1 s用上述步骤生成的均匀设计表记作Un(nm),向量h称作该表的生成向量,有时为了强调h的作用,可将Un(nm)记成Un(h). 给定n,相应的h可以方便地求得,从而m也就确定。所以m是n的一个函数,这个函数曾由大数学家欧拉研究过,称为欧拉函数,记为E(n). 这个函数告诉我们均匀设计表可能有多少列。
$ e) R1 m' T' W6 ~+ `+ ]
由上述好格子点法,很容易列举均匀设计表的一些特点:
t3 U$ T l0 M" M
1) 每个因素的每个水平做一次且仅做一次试验;
S& }: U- M5 n! N4 n3 `2) 任两个因素的试验点点在平面的格子点上,每行每刊有且仅有一个试验点;
5 x |/ U$ `+ C0 u1 a# U6 h性质1)和2)反映了试验安排的“均衡性一,即对每个目素的每个水平一视同仁;
+ E9 x* Q7 q t3) 均匀设计表任两组成的试验方案一般并不等价;
4 S9 Q8 d8 P8 |4) 当因素的水平数增加时, 试验数按水平数的增加量在增加。
: o1 }, O2 I0 ` Z! V7 M$ X(二)使用表的构造
: O$ \9 Q8 s8 L均匀设计在使用时由于选择的列不同,试验的效果也大不相同,于是建议读者按使用表的推荐去选列。那么使用表又是如何产生的呢?假设我们要从均匀设计表U(n)中选出s列,则可能的选择有 种。我们要从中选择一个最好的,这里必须对“好和坏” 有明确的含义。表Un(nm)是由它的生成向量h=(h1,…,hm)所唯一确定的,选择s列,本质上就是从h中选择s个hil,…,his由这s个数生成的均匀设计表为Un(hil,…,his),它是一个n×s矩阵。它的每一行是s维空间Rs中的一个点,故n行对应Rs中n个点,若这n个点在试验范围内均匀,则试验效果好,否则试验效果不好。因此,比较两个均匀设计表Un(hil,…,his)和Un(hjl,…,hjs)的好坏等价于比较由它们所对应的两组点集的均匀性,于是我们必须要给出均匀性度量。
6 \4 D% `6 n. F3 ?- s4 ?( d% p三、均匀性的度量
9 ?* G U o" l# u
在试验区域上布n个试验点Pn ={xk =(xk1,…,xks),k =1,…,n},如何度量其均匀性呢?在数论方法(或伪蒙特卡罗方法)中,最普遍采用的Lp-偏差。令x =(x1,…,xs)’∈Cs,[0,x)=[0,x1)×…[0,xs)为Cs中由远点O到x决定的矩形。令N (Pn,[0,x))为Pn中的点在Cs中散布均匀时,N (Pn,[0,x))/n应与[0,x)的体积Vol([0,x))相接近,两者的差
8 t& T8 g% ]4 g) L2 V8 Y! z
称为点集Pn在点x的偏差。所谓Lp-偏差定义为
当p→∞时,上式化为
0 ^$ l8 Z1 g9 o* T4 x当P=2时,L2-偏差为
! P/ s6 A+ `% {2 z3 N
有关这两种偏差的优缺点及它们的改进,在这里就不再详述了。
5 e+ S2 m5 e( K5 f
四、均匀设计的应用
! a4 @2 Y! j3 T
均匀设计的步骤和正交设计很相似,但也有一些不同之处。通常有如下步骤:
# e+ Q/ A+ Y2 _1 P5 L
1)根据试验的目的,选择合适的因素和相应的水平;
( e/ i( Z6 c3 N
2)选择适台该项试验的均匀设计表,然后根据该表的使用表从中选出列号, 将因素分别安排到这些列号上,并将这些因素的水平按所在列的指示分别对号, 则试验就安排好了。
1 e7 u4 F' g& Z 选择香港浸会大学生物系的一项试验,来说明均匀设计的应用。
c3 c0 ^; h. z
为了研究环境污染对人体的危害,今考核六种金属的含量: 镉(Cd),铜(Cu),锌(Zn),镍(Ni),铬(Cr),铅(Pb),每种金属含量分别取17个水平(百万分之一,ppm):0.01, 0.05, 0.1, 0.2, 0.4, 0.8, 1, 2, 4, 5, 8, 10, 12, 14, 16, 18, 20。今欲考虑这些金属含量(包括它们的交互作用)对老鼠寿命的影响,该试验考核老鼠身上某种细胞的死亡率。
+ ]1 C3 ~9 ?% R# ? v" S
综合考虑,选用均匀设计表U17(1716),根据使用表的指示,选用了表中1, 4, 6, 10, 14, 15列来安排六个因素,其试验方案如表2所示。实验结果为死亡率,为了了解试验误差,提高结论的精度,他们在同一试验条件下将试验重复三次,三次结果(Y1,Y2,Y3)列于表3,三次死亡率的均值为Y,列于表3的最后一列。
& c& L' s: d0 |0 x- ?
表2 环保试验方案
表3 死亡率
R' K% F( {. N( N' n+ X2 u* k v% w& S5 L) Z1 y
进一步利用回归来分析数据。由于数据的各因素水平变化较大,故通常要对水平值先作变换,如取对数后再进行回归。
, I8 l9 S' ]8 U+ v! j6 U b
根据以往经验,知道六种金属间有交互作用,故应选用二次型回归模型,并利用逐步回归来筛选变量。最后得到的回归方程为:
8 m0 C' D5 j v+ l- b. h2 u9 FY=32.68+5.03 log Cd +3.48 log Cu +2.03 log Ni% `, }" I! {2 x# R8 A3 j9 H
+0.55(log Cu)2 -0.63(log Zn)2 +0.94(log Ni)2. t$ t8 q. A- E3 r7 U
+0.53(log Cd) log(Cu) -0.70(log Cd) log(Cr) v6 O( q% X: S
+0.92(log Cu)(log Pb)
' S1 Y3 b; a4 w; @0 \
我们可以得出如下结论:
, |, y; ?6 L1 j S0 N# I
1. Cd,Cu和Ni的含量过高,对老鼠细胞的死亡率有显著作用;
0 V% O$ S, {) H( |2 o% ^$ M* j 2. 金属Cd和Cu,Cd和Cr,Cu和Pb有交互作用,其中Cd和Cu, Cu和Pb对死亡率起正交互作用,而Cd和Cr对死亡率起负交互作用;
1 ^' ]2 V# h8 r! L7 c2 w3 [
3. Zn可能会中和其它金属的破坏作用,降低老鼠细胞的死亡率。
; J! K6 w; B2 R2 z' P
4 }& G G# i' b V( l1 o; _' Y& u 五、结论与建议
# q* Y! E# n; i' b' P$ h
本文简要地介绍了均匀设计的相关知识,也仅仅是惊鸿一瞥。均匀设计的深入研究至今仍然十分有意义,包括均匀性的度量的修正等。
8 a+ }) [( z3 N8 ^ 均匀设计的应用日益广泛,成功的案例与日俱增,读者不难从各种文献库中发现这些案例。近年来,均匀设计走向国际,有关均匀设计和均匀性的文章在国际刊物上已发表了几十篇,包括国际上顶尖的一些杂志,如“Biometrika”, “Technometrics”, “Mathematics Computation”, SIAM的刊物等。
: P, H. c3 m& D( @9 g. z
' ^6 x+ M5 _- D0 s 参考文献
7 F6 _7 I' m1 ~3 Z
[1] 方开泰(1994),均匀设计及其应用,《数理统计与管理》第13卷,第1期:57~63;第2期: 59~61; 第3期: 52~56
4 S8 B; `8 ^# f; {+ A3 _
[2] 方开泰,马长兴(2001),正交与均匀试验设计,科学出版社
8 ]) U$ B; ]# ?$ j/ L; k9 ?/ A
[3] 方开泰(2004),均匀试验设计的理论、方法和应用——历史回顾,江苏大学学报
/ h$ t, G# E% z \0 q) w8 `1 J) {
[4] 方开泰,王元(1996),数论方法在统计中的应用,科学出版社