实验与分析微信ID:LaborPraxis
* X2 ^. k, ]/ `3 b3 b, Q; }
紫外吸收光谱 UV
分析原理:吸收紫外光能量,引起分子中电子能级的跃迁
谱图的表示方法:相对吸收光能量随吸收光波长的变化
提供的信息:吸收峰的位置、强度和形状,提供分子中不同电子结构的信息
+ P# n$ A+ K. J8 o
{5 {+ P3 [7 I7 u; z
荧光光谱法 FS
分析原理:被电磁辐射激发后,从最低单线激发态回到单线基态,发射荧光
谱图的表示方法:发射的荧光能量随光波长的变化
提供的信息:荧光效率和寿命,提供分子中不同电子结构的信息
: ]2 \6 G, ~4 r* W3 |
, l7 l9 d( j2 _$ g% X7 S
红外吸收光谱法 IR
分析原理:吸收红外光能量,引起具有偶极矩变化的分子的振动、转动能级跃迁
谱图的表示方法:相对透射光能量随透射光频率变化
提供的信息:峰的位置、强度和形状,提供功能团或化学键的特征振动频率
2 s8 s L. ?- Z( |* M& j
# j2 T1 q- X+ g% v% t; ^拉曼光谱法 Ram
分析原理:吸收光能后,引起具有极化率变化的分子振动,产生拉曼散射
谱图的表示方法:散射光能量随拉曼位移的变化
提供的信息:峰的位置、强度和形状,提供功能团或化学键的特征振动频率
+ T& B3 N7 G4 T* K0 X9 t+ t7 H, Y6 k9 X6 Y9 p; d( F
核磁共振波谱法 NMR
分析原理:在外磁场中,具有核磁矩的原子核,吸收射频能量,产生核自旋能级的跃迁
谱图的表示方法:吸收光能量随化学位移的变化
提供的信息:峰的化学位移、强度、裂分数和偶合常数,提供核的数目、所处化学环境和几何构型的信息
5 U) C/ p" D' L- a) S" I& v/ X Z
W" Y# s$ w1 _ `) O7 D* ]# ~. ~电子顺磁共振波谱法 ESR
分析原理:在外磁场中,分子中未成对电子吸收射频能量,产生电子自旋能级跃迁
谱图的表示方法:吸收光能量或微分能量随磁场强度变化
提供的信息:谱线位置、强度、裂分数目和超精细分裂常数,提供未成对电子密度、分子键特性及几何构型信息
1 X H3 t' k. J- Y5 D; f8 A
% B: R, P- y4 K4 }; ?8 f
质谱分析法 MS
分析原理:分子在真空中被电子轰击,形成离子,通过电磁场按不同m/e分离
谱图的表示方法:以棒图形式表示离子的相对峰度随m/e的变化
提供的信息:分子离子及碎片离子的质量数及其相对峰度,提供分子量,元素组成及结构的信息
* S: |; @8 W2 |6 K" J9 h0 x1 [* ^; ^' I1 F
气相色谱法 GC
分析原理:样品中各组分在流动相和固定相之间,由于分配系数不同而分离
谱图的表示方法:柱后流出物浓度随保留值的变化
提供的信息:峰的保留值与组分热力学参数有关,是定性依据;峰面积与组分含量有关
w+ c3 M/ M. k: ~3 u9 c& r+ P5 M: l0 M% P
反气相色谱法 IGC
分析原理:探针分子保留值的变化取决于它和作为固定相的聚合物样品之间的相互作用力
谱图的表示方法:探针分子比保留体积的对数值随柱温倒数的变化曲线
提供的信息:探针分子保留值与温度的关系提供聚合物的热力学参数
% a& {8 s; n! B- D" L \0 K- Y; G8 w- p- A% F5 z/ o& a3 x
裂解气相色谱法 PGC
分析原理:高分子材料在一定条件下瞬间裂解,可获得具有一定特征的碎片
谱图的表示方法:柱后流出物浓度随保留值的变化
提供的信息:谱图的指纹性或特征碎片峰,表征聚合物的化学结构和几何构型
! V: k# y9 s0 `' a/ k4 \$ f' w
- ^3 t9 q2 W6 o0 A) @! y2 \" @凝胶色谱法 GPC
分析原理:样品通过凝胶柱时,按分子的流体力学体积不同进行分离,大分子先流出
谱图的表示方法:柱后流出物浓度随保留值的变化
提供的信息:高聚物的平均分子量及其分布
9 M& t& v0 G+ p! b1 N6 Y" c. T# R; c3 y4 p( [2 Q
热重法 TG
分析原理:在控温环境中,样品重量随温度或时间变化
谱图的表示方法:样品的重量分数随温度或时间的变化曲线
提供的信息:曲线陡降处为样品失重区,平台区为样品的热稳定区
3 \8 O h* l, b+ K) c* N) l2 B8 {8 t4 W
热差分析 DTA
分析原理:样品与参比物处于同一控温环境中,由于二者导热系数不同产生温差,记录温度随环境温度或时间的变化
谱图的表示方法:温差随环境温度或时间的变化曲线
提供的信息:提供聚合物热转变温度及各种热效应的信息
, m2 Q6 j* c& s* k& H- Y. r- }
) ^; w" e& R2 S+ K0 G示差扫描量热分析 DSC
分析原理:样品与参比物处于同一控温环境中,记录维持温差为零时,所需能量随环境温度或时间的变化
谱图的表示方法:热量或其变化率随环境温度或时间的变化曲线
提供的信息:提供聚合物热转变温度及各种热效应的信息
' a$ a; j: h' ?1 ^0 I2 O+ j2 F' T1 u: u
静态热―力分析 TMA
分析原理:样品在恒力作用下产生的形变随温度或时间变化
谱图的表示方法:样品形变值随温度或时间变化曲线
提供的信息:热转变温度和力学状态
/ V$ W% |5 E: Z) J. y& _7 |' N* e2 [9 g& i9 t
动态热―力分析 DMA
分析原理:样品在周期性变化的外力作用下产生的形变随温度的变化
谱图的表示方法:模量或tgδ随温度变化曲线
提供的信息:热转变温度模量和tgδ
! \% ?$ |4 R. ]( N* r! L5 Q# q# [# r& t9 R
透射电子显微术 TEM
分析原理:高能电子束穿透试样时发生散射、吸收、干涉和衍射,使得在相平面形成衬度,显示出图象
谱图的表示方法:质厚衬度象、明场衍衬象、暗场衍衬象、晶格条纹象、和分子象
提供的信息:晶体形貌、分子量分布、微孔尺寸分布、多相结构和晶格与缺陷等
& i* M7 |; Q* b
. X* F* }6 \* Z7 u3 h. X) W扫描电子显微术 SEM
分析原理:用电子技术检测高能电子束与样品作用时产生二次电子、背散射电子、吸收电子、X射线等并放大成象
谱图的表示方法:背散射象、二次电子象、吸收电流象、元素的线分布和面分布等
提供的信息:断口形貌、表面显微结构、薄膜内部的显微结构、微区元素分析与定量元素分析等
0 I3 A' a! Y$ X0 _
: f7 v' w9 }: s( t* z
原子吸收 AAS
原理:通过原子化器将待测试样原子化,待测原子吸收待测元素空心阴极灯的光,从而使用检测器检测到的能量变低,从而得到吸光度。吸光度与待测元素的浓度成正比。
- z/ `8 n0 `4 s4 e4 s+ v3 X4 m( M7 L, Q2 v% D# ^6 o
电感耦合高频等离子体 ICP
原理:利用氩等离子体产生的高温使用试样完全分解形成激发态的原子和离子,由于激发态的原子和离子不稳定,外层电子会从激发态向低的能级跃迁,因此发射出特征的谱线。通过光栅等分光后,利用检测器检测特定波长的强度,光的强度与待测元素浓度成正比。
9 w3 [- M. h1 @' S
6 I( h7 N2 q- o7 z
x射线衍射XRD
X射线是原子内层电子在高速运动电子的轰击下跃迁而产生的光辐射,主要有连续X射线和特征X射线两种。晶体可被用作X光的光栅,这些很大数目的原子或离子/分子所产生的相干散射将会发生光的干涉作用,从而影响散射的X射线的强度增强或减弱。由于大量原子散射波的叠加,互相干涉而产生最大强度的光束称为X射线的衍射线。
满足衍射条件,可应用布拉格公式:2dsinθ=λ
应用已知波长的X射线来测量θ角,从而计算出晶面间距d,这是用于X射线结构分析;另一个是应用已知d的晶体来测量θ角,从而计算出特征X射线的波长,进而可在已有资料查出试样中所含的元素。