现认为置信度在此算法中应该是用户指定一个即可。“In general,due to the weak (logarithmic)dependence on T,small settings for T(i.e.,less than 0.1)do not have a large effect on the overall window size”。
没找到较好的计算过程,先贴一段吧。
置信度:
置信度,是指特定个体对待特定命题真实性相信的程度,也就是概率是对个人信念合理性的量度。
对概率的置信度解释表明,事件本身并没有什么概率,事件之所以指派有概率只是指派概率的人头脑中所具有的信念证据。置信水平是指总体参数值落在样本统计值某一区内的概率;而置信区间是指在某一置信水平下,样本统计值与总体参数值间误差范围。置信区间越大,置信水平越高。
置信度,也称为可靠度,或置信水平、置信系数,即在抽样对总体参数作出估计时,由于样本的随机性,其结论总是不确定的。因此,采用一种概率的陈述方法,也就是数理统计中的区间估计法,即估计值与总体参数在一定允许的误差范围以内,其相应的概率有多大,这个相应的概率称作置信度。
一般情况下,置信度是表明抽样指标和总体指标的误差不超过一定范围的概率保证度,用F(t)来表示,在大样本(n>30)条件下,置信度F(t)是概率度t函数,概率度越大,置信度越越大。假设我们指出测量结果的准确性有95%的可靠性,这个95%就称为置信度(P),又称为置信水平,它是指人们对测量结果判断的可信程度。
置信水平(Confidence level),是描述GIS中线元素与面元素的位置不确定性的重要指标之一。置信水平表示区间估计的把握程度,置信区间的跨度是置信水平的正函数,即要求的把握程度越大,势必得到一个较宽的置信区间,这就相应降低了估计的准确程度.
简单地从数学角度分析一下。
首先明确其统计模型的类型,加入把每个对象的感觉量化为分数的话,例如从0~100之间的某个数字,那么该统计的结果即3000个数值,应该近似服从于正态分布。即,当结果受到若干个彼此影响力差不多的因素影响时,所得的大量结果服从正态分布。
如果调查不是上述那样简单,则基本思路是:先将结果量化为数值,再根据影响结果的因素的特征来分类,看它具体符合哪种分布类型。
具体的置信度设置:它应当是样本容量(例如上面的“3000”)和数值结果波动范围的函数。也就是说,你得到的结果会在某个特定数值附近波动,你希望知道的是波动范围到底有多大。简单的说,置信度随着所取范围增大而减小,例如假设平均值为50分,那么45~55之间的可能性显然比35~65之间小,也就是置信度低,而出现在0~100之间的置信度则是100%,因为全部范围就这么大。另外,样本容量一般有利于提高置信度,即人数越多所得结果越可靠,不过在达到一定界限之后对于提高置信度贡献就很小了,所以一般取一定容量就足够了。
具体估算置信度时,利用所得到的结果(平均值和样本方差)计算出一个表征偏离程度的数,然后在任何一本概率统计的书后查表,表中给出的是偏离程度与置信百分数的对应关系。基本上就是这个道理,更具体的涉及到操作层面的东西,恐怕还是要参考有关书籍,按图索骥会更稳妥些。
例如在10000个样本中,要得到95%的置信度,大概需要抽取至少600份样本。
确定调查样本量的计算公式,可以从统计教材中找到,例如:
n=Z[(2×S)2/d]2
其中:
N:代表所需要样本量
Z:置信水平的Z统计量,如95%置信水平的Z统计量为1.96
S:总体的标准差
d:置信区间的1/2,在实际应用中就是容许误差,或者调查误差
但是总体标准差往往难以确定,所以按经验,这个总体数量,抽取600份左右。当然,如果分层分类控制得好,也可以少一些样本。
置信度是区间估计里的概念,显著性水平是假设检验里的概念。置信度是一个比较接近于1的数字,如0.9,0.95,0.99等,显著性水平是一个比较接近于0的数字,如0.01,0.05,0.1等。置信水平是1-a,显著性水平是a,在区间估计商,只关注置信度或置信水平1-a,而显著性水平是假设检验中的概念。
置信度或置信水平是正确的概率,显著性水平是犯错误的概率,置信度可以直接理解为所做的估计有多大的把握,比如有95%的把握,观测值落在所给出的区间中
可以这么说:
置信度是人为规定的,是检验是否发生小概率的标准,显著性水平则是数据本身是否有差异,一般用P表示,P越小越好,例如,P<0.05,说明差异显著。
期望两组数不同,但假设它们完全相同,概率是95%、98%(置信度),但处理后的结果发现数在置信区间外,即发生了小概率事件,P<0.05或P<0.01,那么既然发生了小概率事件,则两组数据不同,选择置信度0.95和0.98是不同的,就要剔除一个离群数据,选择高置信度的结果就更可靠。
置信区间是一个期望轴,以T检验为例,以样本情况推断总体情况,如果总体多出现在置信区间外,则推翻原假设,差异显著的检验其实是想证明两数据不同,但只能假设相同推翻这个假设,才能证明它们不同。
来源:网络汇总
欢迎光临 药群论坛 (http://yaoqun.net/) | Powered by Discuz! X3.2 |